About us关于我们
行业资讯 公司资讯

重金属废水处理工艺之物理法

TIME:2018-09-11   click: 125 次

水资源在国民经济发展和社会生产中发挥着重要的作用,同时也是人们生活中不可缺少的一部分。但是随着工农业的迅速发展,工业废水大量排放,使得水体重金属污染日益严重。据统计,我国每年产生400亿t左右的工业废水。其中重金属废水约占60%。这些废水严重污染地表水与地下水,造成可利用水资源总量急剧下降。重金属废水一般来源于矿山开采、金属冶炼与加工、电镀、制革、农药、造纸、油漆、印染、核技术及石油化工等行业。重金属难以生物降解且易被生物吸收富集,毒性具有持续性,是一类极具潜在危害的污染物,如不治理必将对生态环境及人体健康造成严重的威胁。然而,重金属作为一类重要的宝贵的资源,又具有很高的使用价值。因此如何有效治理水体重金属污染,保护人类健康和生态环境,同时回收利用重金属,缓解我国资源和环境的压力,是当前不可忽略的问题。

目前,重金属废水处理方法主要有三种:第一种化学法,通过化学反应将重金属离子去除的方法,包括化学沉淀法、化学还原法、电化学和高分子重金属捕集剂法等。第二种物理法,在不改变重金属离子化学形态的条件下,通过吸附、浓缩而分离的方法,包括吸附法、溶剂萃取法、蒸发和凝固法、离子交换法和膜分离法等。第三类是生物法,主要是借助微生物或植物的絮凝、吸收、积累、富集等作用去除重金属的方法,包括生物絮凝、植物修复和生物吸附。本文主要介绍物理法在重金属废水中的应用及研究进展,以便为水体重金属污染的治理提供一定理论的参考。

物理法

1、离子交换法

离子交换法是通过离子交换树脂与水体中重金属离子发生离子交换,使得水体中重金属离子浓度降低,从而使废水得以净化的方法。动力是离子间浓度差和交换剂上的功能基对离子的亲和能力。离子交换树脂一般有阳离子交换树脂,阴离子交换树脂,螯合树脂和腐植酸树脂等。在工业废水处理中,离子交换树脂主要用于回收重金属、贵金属和稀有金属等。RengarajS等用IRN77和SKN1型阳离子交换树脂去除和回收核电站冷却废水中的Cr3+。魏健等用所选的离子交换树脂处理含Mn2+废水,该法具有交换容量大、出水水质稳定的优点,并实现锰的回收利用。Li等采用螯合离子交换树脂Chelex100和IRC748从溶液中置换出Cu2+和Zn2+,当平衡时,对Cu2+的最大交换量分别为0.88mol/kg和1.10mol/kg。

离子交换树脂法可选择性地回收水体中的重金属,出水水质含重金属离子浓度远低于化学沉淀法处理后的水中重金属离子的浓度,产生的污泥量较少。但是离子交换树脂存在强度低、不耐高温、吸附率低等缺点。提高交换树脂的吸附容量、吸附选择性、交换速度以及再生利用性能及机械强度是现在乃至今后的一个重要发展方向。

2、膜分离法

作为一种新型的分离技术,膜分离技术既能对废水进行有效的净化又能回收一些有用物质,同时具有节能、无相变、设备简单、操作方便等特点,因此在废水处理中得到了广泛的应用并显示了广阔的发展前景。其原理是通过半透膜选择透过作用,在外界能量的推动下,对溶液中溶质和溶剂进行分离,从而达到分离、提纯的目的。重金属废水的处理中常用的膜分离技术有微滤、超滤,纳滤、反渗透及电渗析等。

由于重金属离子的粒径较小、单一的膜分离工艺无法对其较好的去除,通常采取膜组合工艺。万金宝等采用中和/微滤工艺处理含Zn2+、Pb2+的废水。研究结果表明,Zn2+,Pb2+的去除率分别为90.92%、76.55%。加入絮凝剂后,去除率分别为99.92%,99.77%。邱运仁等采用络合—超滤耦合工艺,以聚丙烯酸钠为络合剂,利用芳香聚酰胺超滤膜处理Cu2+废水。研究表明,在pH值为6,P/M为22时,Cu2+的截留率在97%以上。与微滤,超滤相比,纳滤是一种截留粒子精度较高的膜工艺,并且对于二价及多价金属离子有较高的截留率。Mehiguene等研究了利用纳滤技术分离废水中的Cu2+和Cd2+,发现在溶液加入HNO3时Cd2+的截留率为35.2%,Cu2+的截留率为76.5%,能够实现铜离子和镉离子的有效分离。但纳滤过程中的浓差极化会导致水通量和脱盐率显著降低,也会引起一些难溶盐如CaSO4等在膜上沉淀,因此实际应用中应注重集成工艺的开发和过程的优化。

膜分离技术具有高效、节能、无二次污染等优点,在废水处理领域有很大的发展潜力。但是工业废水成分复杂,处理条件较为苛刻,使得膜材料必须具有良好的分离性能和较长的使用寿命,从这方面来看,开发抗污染性能优良的高性能膜具有重要的战略意义。

3、吸附法

吸附法是利用一些多孔性物质为吸附剂去除废水中重金属离子的方法。活性炭是使用最早、运用最广泛的吸附剂,比表面积大、处理率高,但价格较贵且难脱附,限制了其在废水处理中的发展。因此,寻找吸附性好,价格低廉的吸附剂成为近些年的研究热点。目前,常采用矿物材料、工业废弃物以及农林废弃物等廉价材料为吸附剂。沸石是最早应用于重金属废水的多孔矿物质,其骨架结构使之具有巨大的比表面积和较强的吸附性。JonRKiser等用Fe(Ⅱ)改性的沸石处理含Cr(Ⅵ)废水,改性后,沸石对Cr(Ⅵ)的附量可达到0.3mmol/g,吸附能力明显提高。近几年,一些工业和农林废弃物由于来源丰富,价格低廉,也被广泛用于治理重金属废水。Marisa等用水热法预处理粉煤灰,研究了改性粉煤灰的吸附能力。结果表明,Cu2+、Mn2+的去除率分别为99%、85%。RosangelaA等采用不经处理的黄果西番莲壳作为吸附剂处理水溶液中的Cr3+和Pb2+,最大吸附容量分别达到85.1mg/g,151.6mg/g。DahiyaS等采用处理过的蟹壳和槟榔壳吸附含Pb2+和Cu2+的水溶液,平衡时,槟榔壳对Pb2+和Cu2+的最大吸附量分别为18.33mg/g±0.44mg/g和17.64mg/g±0.31mg/g。

目前,吸附法主要是非选择性吸附,从而对重金属污染物的去除不具备选择性,无法针对特殊的废水去除特定的重金属离子。而在很多实际废水中,往往是以一种或者两种主要的重金属污染物为主。因此从环境保护和资源回收的角度,使用吸附剂进行选择性吸附处理重金属废水具有重要意义。